
CISC 322/326 - Software Architecture
Assignment #1: Report

Conceptual Architecture Analysis of ScummVM

TC++
Evan Cook - 21egc10@queensu.ca
Hugh Tuckwell - 21halt@queensu.ca

Will MacInnis - william.macinnis@queensu.ca
Liv Stewart - olivia.stewart@queensu.ca

Jay Wu - 21jjw12@queensu.ca
Nate Rinsma - 21nr6@queensu.ca

mailto:21egc10@queensu.ca
mailto:21halt@queensu.ca
mailto:william.macinnis@queensu.ca
mailto:olivia.stewart@queensu.ca
mailto:21jjw12@queensu.ca
mailto:21nr6@queensu.ca


1 TC++ - A1 Report CISC 322

Table Of Contents

1. Abstract

2. Introduction and Overview

3. Derivation Process

4. Architecture

4.1. Architecture Style

4.2. System Overview

4.3. Development History

4.4. SCI

4.4.1. Introduction

4.4.2. Architecture and Functionality

4.4.3. History and Evolution

4.5. Control Flow

4.6. Use Cases

5. Data Dictionary

6. Naming Conventions

7. Conclusions

8. Lessons Learned

9. References



2 TC++ - A1 Report CISC 322

1. Abstract
This report provides a general overview of the software architecture of ScummVM which

is a software project targeted at the emulation of classic graphical adventure games and
role-playing games. What had started off with a codebase that had been crafted to support
specifically the SCUMM games of LucasArts expanded to become a multi-engine platform able
to run several thousand point-and-click games on quite a number of desktop and mobile
operating systems.

ScummVM's architecture is designed with scalability and modularity in mind; such a
layered structure means adding new game engines or function implementation doesn't cause too
much disruption. While the entire system fits under a layered style architecture, its worth noting
that at the base level, ScummVM is interpreter style based on the fact that it converts
game-specific code into a format that is compatible with various operating systems.The major
components comprising the system concern the following: Game Engines, Audio, Graphics,
Input Handling, Management of the Game State, Launcher, and OSystem API. Each of these
modules will play a critical role in ensuring cross-platform compatibility, smooth functionality,
and user-friendliness.

Another critical addition will be the SCI engine: Sierra's Creative Interpreter, which will
interact with these other components in managing the state of the games, input/output interfaces,
and degree of audiovisual fidelity. In design, all classic older games will be preserved and
adapted to modern systems without losing their original authenticity.

Thus, the report, in general, sums up that ScummVM is based on such a flexible
architecture that allows and supports constant development and serves as an effective and strong
basis for classic game emulation across different environments. This modular design allows for
seamless updates as well as guarantees long-term relevance against the ever-changing landscape
of gaming.

2. Introduction and Overview
Initially released on October 8, 2001, ScummVM, which stands for Script Creation

Utility for Maniac Mansion Virtual Machine, was originally designed to run LucasArts adventure
games on the SCUMM system. Over years of development and changes, ScummVM has become
recognized as a set of game engine recreations that allows users to play certain classical
graphical adventure and role-playing games from various non-SCUMM games.

It is analyzed that ScummVM follows a layered architectural style to effectively organize
the functions required to emulate the games. Furthermore, this style allows ScummVM to scale
with the addition of new game engines and features without affecting the capabilities of the
system. While the overall system follows a layered style, the core of ScummVM follows an
interpreter style that allows the system to run point-and-click games regardless of the platform it



3 TC++ - A1 Report CISC 322

is running on. Together with the interpreter style, ScummVM’s architecture includes modular
components that interact with the game engine interpreter.

These components have been identified as 7 distinct modular components which are the
engines (specifically SCI), audio, graphics, input handling, game state management, launcher,
and OSystem API. To be more specific, the engine components like SCI are important for
interpreting game data files and managing the audio and graphic components to create tangible
visual and aural experiences. The audio component includes various drivers and encoders to
ensure that games maintain their original sound quality by loading, mixing, and playing audio
assets which are evoked by in-game events. The graphics component manages visual output by
rendering both 2D and 3D game worlds along with the GUI to incorporate various scaling
methods to adapt games for modern displays and various rendering models to emulate the
appearance of the different systems. The input handling components register the inputs made by
the user through mediums of their choosing. These inputs are then processed through the games’
engines so that a wide range of systems and input devices are accommodated. The game state
management component monitors the player’s progress by tracking variable values and events.
This component also features autosaving and manual saving which allows players to reload their
game states through a Global Main Menu. The launcher component handles the various engines
and offers a graphical interface for users to manage their games like loading, removing,
launching, or even editing the games. These actions can be performed because the launcher
communicates with the platform abstraction component to access these game files and load
games with their corresponding engines into memory. Finally, the OSystem API component is
the bridge connecting ScummVM with the operating system of different platforms. This platform
abstraction component specifies the various features of games. It ensures compatibility across
various platforms through interactions within the input handling, launcher, and auditory and
graphical components to manage system resources.

This report also covers the major points in the history/development of ScummVM. This
starts all the way from the beginning when Ludvig Strigeus wanted to create an engine for
running Monkey Island 2 on Linux. The history then continues to announce how Vincent Hamm
and many interested developers created and joined the team. Then the history mentions how the
development team made significant rewrites for improved functionality and user experience. It
also mentions the addition of the SCI engine. Finally, it concludes with the current state of
ScummVM and how it is an open-source platform that supports a wide variety of games and
systems.

Since various games require specific game engines to run, there are many engines that
ScummVM can run. In this report, only one engine will be analyzed: the SCI engine. Similar to
ScummVM, the SCI engine follows an interpreter architectural style with a PMachine as its core
component. This PMachine is essentially a virtual CPU that allocates heap memory, has its own
set of registers and a stack, reads instructions from data files, and executes the game based on the
previous resources. We will also be talking about the history and evolution of the SCI engine.



4 TC++ - A1 Report CISC 322

This means starting from SCI0 which supported 230x200 graphics with 16 colours. Then
evolving into SCI1, SCI 32, SCI 2, and SCI 3, which had increasingly higher-resolution graphics
and expanding resource types.

We also provide a dependency diagram of the ScummVM architecture. This visually
displays how the 7 modular components interact with each other and the operating system of the
machine that runs ScummVM. We then further explain how each component may interact with
its fellow components.

Following shortly after, we conceptualized 2 use cases of ScummVM. The first use case
shows a sequence diagram of how the system would process and execute playing a
point-and-click game on ScummVM. The second use case is also a sequence diagram but shows
how the system would process and execute launching a game on ScummVM. Whereas the
dependency diagram simply showed which modules interacted with what, these sequence
diagrams show a concurrency view of how the different modules interact with each other and
when/the order in which they would interact

Finally, we conclude the report with a summary of our key findings of ScummVM and
proposals for future directions. With our findings and proposals in place, we reflected on the
lessons we learned while conducting our research on the conceptual architecture of ScummVM.

3. Derivation Process
When we assigned ScummVM as our software of interest for the project, the first thing

we decided to do was for each of us to do our own independent research and document all of our
findings in a shared brainstorming document. Doing this gave us all a solid understanding of the
function of the software as well as ideas for potential components and architectural styles. After
conducting this independent research, we had a meeting to discuss our findings with each other
to further strengthen our understanding of the software and make sure we’re all on the same
page. At this meeting, we collaborated to make our first rough draft diagram for how the
software could be organized.

Upon finishing that first draft, we started to discuss potential architectural styles. Along
with layered and interpreter styles, which will be discussed later on, we also considered a
publish-subscribe style. Our reasoning for this was that it's possible that while running the game,
the engine could announce events that the other components could respond to, such as cues for
the audio and graphical components to perform their tasks. After some further discussion we
realized that although this style could possibly fit, it doesn’t make the most sense and isn’t
applicable to the rest of the system. After this meeting, we decided on a layered and interpreter
style, but still had some doubts. Once we did further research into fully understanding the
OSystem API component and the engine component, we were confident in our choice of
architectural style.



5 TC++ - A1 Report CISC 322

4. Architecture

4.1 Architecture Style
The conceptual architecture of ScummVM follows a layered architecture style, which

helps to organize the complex set of functionalities necessary to emulate and run classic
point-and-click games. The biggest indicator that this is a layered architecture is the OSystem
API, which acts as a layer that connects the operating system to the rest of the software. Each
layer is responsible for certain tasks, from managing input/output to interpreting the actual game
scripts, enabling a clean separation of concerns. This allows for scalability, enabling the addition
of new game engines or features without disrupting the entire system. At the heart of
ScummVM’s layered architecture is a large interpreter system, which serves as a virtual machine
to run platform-independent point-and-click game code. This subsystem interprets game scripts,
such as those developed using SCUMM, AGI, or SCI engines; and translates them into real-time
actions within the game. This allows them to be played across different operating systems
without modification, preserving the original gameplay experience. In addition to the interpreter
system, ScummVM’s architecture includes modular components for key functions like audio,
graphics, input handling, and game state management. These components interact with the game
engine interpreter but can be updated or replaced independently - allowing for modular support
and continued optimization of point-and-click games for a wide variety of platforms. The layered
architecture style provides the flexibility and robustness needed to emulate a diverse set of games
effectively.

4.2 System Overview
There are seven main components in the ScummVM architecture. The roles of these

components and their interactions with each other will be the subject of this section.
Engines / SCI: The engines component is a collection of recreated adventure game engines that
ScummVM uses to run adventure games. For the rest of the report, when referring to the game
engines, we will specifically be talking about the SCI game engine. The game engine component
is responsible for interpreting the data files of the game being run. The engine makes use of the
audio component and graphics component to turn the interpreted data into something tangible
that the user can see and hear.
Audio: The audio component of ScummVM is comprised of several different parts like drivers,
decoder(s), and more. ScummVM includes built-in support for MIDI, allowing users to emulate
or use a physical synth such as the Roland MT-32. This means that games played on modern
systems are still able to sound exactly like they did on the systems that they were originally
released for. The audio component is responsible for loading the appropriate audio asset as
specified by the resource manager, mixing it, and initiating playback at the right time given
events taking place in the game world



6 TC++ - A1 Report CISC 322

Graphics: The graphics component of ScummVM is responsible for managing the visual output
presented to the player. This includes rendering both two-dimensional and three-dimensional
game worlds, but also the GUI that the player will see. One key task of the graphics component
is scaling. Since ScummVM runs games originally made for different displays, ScummVM
includes a number of different methods for scaling the image up to larger sizes to better fit
modern screens. There are even different rendering modes included, allowing ScummVM to
emulate the looks of different systems; for a few older games which could be played on more
than one system.
Input Handling: The input handling component is responsible for capturing user input. In the
case of ScummVM here, that will come in the form of either mouse clicks, keyboard strokes, or
input from joysticks or other game controllers. After the input is captured, it is passed to the
engine for processing. It is important to consider here that users may be installing ScummVM on
a multitude of systems, so the input handler may well have to process input from, say, a Wii
controller and not just your regular mouse and keyboard.
Game State Management: The game state management component of ScummVM tracks the
current state of the player’s progress through the game. This includes several things such as
variable values, events taking place both past and present, and more. ScummVM incorporates an
autosave feature, triggering an automatic save of the current state of the game every five
minutes, adjustable in a configuration file. Otherwise, the player is able to use a general function
called the Global Main Menu to make a save and/or load a previous save from any point within a
game. From the Global Main Menu, one is also able to resume their game, quit ScummVM
entirely or just exit to the launcher, or even customize some gameplay settings in an options tab.
Launcher: The launcher is responsible for providing a graphical interface to the user, as well as
managing engines. Within the launcher, users can load games from their system, remove games,
launch games, and edit game-specific settings as well as ScummVM settings. It communicates
with the platform abstraction component to access game files, as well as to load the game
programs and corresponding engine into memory when being run.
OSystem API: The OSystem API component acts as a bridge between ScummVM and the
platform's operating system. The API specifies various features a game can use. These could be
things like displaying graphics on a screen, receiving input, etc. The API is then implemented for
various different operating systems so that the games and engines are able to run on any platform
that the OSystem API has been implemented for. The OSystem API interacts with the input
handler when receiving input from the operating system, as well as with the launcher when it
needs to access files and other operating system resources. It also receives calls from the audio
and graphical components and passes on these calls to the operating system.

4.3 Development History
ScummVM started off as computer science student Ludvig Strigeus’ efforts to create an

engine capable of running Monkey Island 2 on his Linux machine. He was soon joined by



7 TC++ - A1 Report CISC 322

Vincent Hamm, who was separately working on a SCUMM interpreter but abandoned his efforts
after realizing that Strigeus was further ahead. After some time the implementation for both
Monkey Island II and an additional title, Indiana Jones and the Fate of Atlantis, was finished.

After it was noted and reported on by news website Slashdot in early November 2001,
there was an influx of interested developers. Work was able to progress in various parts of the
project and the user base grew greatly. Even with all of this expanded interest and growth, the
developers still feared legal reprisal, since they were replicating patented content. Nevertheless,
they persisted. New games were added to the library of supported titles, and even entirely new
engines to support them. Eventually, by mid-2002, both Strigeus and Hamm had wandered away
from ScummVM to pursue other projects.

Despite the founders leaving, there were still around a dozen other active contributors at
the time, so the project was still able to grow. It was roughly at this time that the entire project
underwent a rewrite from C to C++. This was mainly an effort to improve readability and
maintainability and to clean things up at the same time. A rewrite of the GUI soon followed
which made its first appearance in release version 0.3.0, which was also notable as being the first
release version to include a launcher as a frontend (previously the command line was used to
launch games). The company Revolution Software even ended up donating the source code for
two of its games to the ScummVM developers at the time.

More and more continued to be added to the project as time went on. The 14th of
February 2009 saw the addition of the SCI engine (below) to ScummVM, first being included in
release version 1.2.0. One particularly notable change was that the project, which initially only
supported two-dimensional point-and-click games, grew to support even certain
three-dimensional adventure game titles. Recently in 2021, ScummVM celebrated its 20th
anniversary, a great testament to its longevity and continuously active development.

To this day, ScummVM continues to evolve. ScummVM is an open-source project, and
so developers who are interested in the project continue to add support for more game engines so
that a wider variety of games can be run, as well as support for more operating systems so that
you can play these games on any sort of device.

4.4 SCI

4.4.1 Introduction
SCI refers to “Script Code Interpreter”, and then later “Sierra’s Creative Interpreter”. SCI

was created by Sierra as a new scripting language to write their adventure games in. It is used for
running platform-independent, object-oriented code.
4.4.2 Architecture and Functionality

The architecture of SCI is an interpreter-style architecture. The main component of SCI is
the PMachine. This is essentially a virtual CPU that executes the game being run. When the SCI
interpreter is initialized, memory is allocated on the heap for the PMachine, as well as a pointer



8 TC++ - A1 Report CISC 322

to the game object. When a script needs to be executed by the PMachine, an image/copy of it is
also loaded into the heap. The PMachine has its own set of registers, as well as a stack, that is
used to keep track of the current state of the program. The PMachine reads the instructions from
the data files, which are files of machine code that have been compiled from Sierra’s SCI
compiler, and executes the instructions specified by these files to run the game.
4.3.3 History and Evolution

As Sierra continued to make games using SCI, they continued to work on SCI itself to
increase its capabilities. The first version of SCI is referred to as SCI0. This engine allowed for
320x200 graphics, with 16 colours available. It also supported a music card-compatible
soundtrack. For gameplay, it supported keyboard input, which was then checked with a text
parser to perform actions in games. The engine supported a small amount of resources, which
can be grouped into four main categories. VIEW, PIC, FONT, and CURSOR for graphics,
SCRIPT and VOCAB (for parsing user input) for logic, SOUND and PATCH for sound, and
TEXT for strings. The next version of SCI is SCI1. This was the biggest change for SCI. The
engine now supports 256 colour graphics instead of the previously available 16. It also
introduced a point-and-click interface, which allows them to create point-and-click style
adventure games as opposed to the previous text-based games. They also expanded the resources
to a much bigger list. They continued to create more versions, SCI 32, SCI 2 and SCI 3,
however, the changes aren’t significant and are essentially just higher resolution graphics and
more resource types.

4.5 Control Flow

Figure 1: A dependency diagram of the ScumVM architecture.

One of the main important components of the architecture is the OSystsem API which
sits between all the other components and the user’s operating system. When a user wants to play



9 TC++ - A1 Report CISC 322

a game, they first have to use the launcher which displays a GUI. Once the user selects the game
the SCI engine starts up. The engine takes care of all the game logic. Whenever a user presses a
button on their keyboard or moves their mouse the OSystem API sends a message through the
Input Handling component, which then communicates with the engine. The Engine component
also communicates with the Graphics and Audio components which then send data back to the
OSystem API to allow for graphics and audio to be seen and heard by the user. When a user
wants to save a game, the Game State Management component sends the save files through the
OSystem API before the file is saved to the user’s local storage.

4.6 Use Cases:

1. Playing a Point-And-Click Game on ScummVM

Figure 2: Use case 1: ScummVM loads the required components in order to update the
status of a video game based on user input and displays the respective output



10 TC++ - A1 Report CISC 322

The first use case assumes that the user is currently playing a point-and-click game
through ScummVM and gives some kind of input (mouse click) in order to play the game. As
soon as the user provides input, it is sent to the O-System API in order to interpret the input into
something the engine can understand. Firstly, the O-System API sends the input to the Input
Handling module in order to process the input information, which then sends the processed input
to the engine in order to load a new engine status based on the user’s input. After the engine
receives this new input info, it then goes on to update the various modules required to play the
game. Firstly, the engine loads the graphics module, which returns the updated graphics based on
the given user input to the O-System API in order to be converted into graphics that the user’s
operating system can understand. The engine then does the exact same for the audio module,
converting the updated audio based on the given user input into audio that the user’s operating
system can also understand. Finally, the engine updates the current game status based on the
given user input, and returns it to the O-System API in order for it to be loaded to the user. After
the O-System API has all updated elements of the game loaded successfully as well as any save
data, it now displays the updated game status of the game to the user, who continues to play the
game.

2. Launching a Game on ScummVM



11 TC++ - A1 Report CISC 322

Figure 3: Use case 2: ScummVM loads the required components to successfully launch a
point-and-click game

The second use case assumes that ScummVM is booting a point-and-click game from the
initial ScummVM launcher. It starts off with the user choosing a game to launch through the
launcher. After the user has selected a game to play, the launcher calls the O-System API to start
the conversion of the engine of the selected game in order to run and play the game. The
O-System API then calls the engine to start loading the various modules required to play the
game. Firstly, it loads the graphics module, which returns the graphics to the O-System API in
order to be converted into graphics that the user’s operating system can understand. The engine
then does the exact same for the audio module, converting the original audio into audio that the
user’s operating system can also understand. Finally, the engine loads any game-saved data that
the user may have from previous game sessions and returns it to the O-System API for it to be
loaded to the user. After the O-System API has all elements of the game loaded successfully as
well as any save data, it now displays the elements of the game to the user, who continues to play
the game.

5. Data Dictionary
API: Application Programming Interface. A piece of software which facilitates
communication/functioning between two different computers or other pieces of software
SCI: A game engine created by Sierra
MIDI: Musical Instrument Digital Interface. Not sound itself, more comparable to digital sheet
music
GUI: Graphical User Interface. Allows the user to interact with the system through graphical
icons and other visual indicators as opposed to a text-only command line terminal interface

6. Naming Conventions
API: Application Programming Interface
CPU: Central Processing Unit
GUI: Graphical User Interface
MIDI: Musical Instrument Digital Interface
SCI: Script Code Interpreter
SCUMM: Script Creation Utility for Maniac Mansion
VM: Virtual Machine

7. Conclusions
Compared to when we were first introduced to ScummVM, we have a much better

understanding of the system and its conceptual architecture from examining its documentation
from when ScummVM was first created up until now. From analyzing the ScummVM system,



12 TC++ - A1 Report CISC 322

we have come to the conclusion that it fits into a layered architectural style as it allows
ScummVM. Furthermore, while layered style encompasses the entire system, at its core, we
consider ScummVM as an interpreter architectural style as well. Looking at the architecture
components, We identified 7 key modules which include the engines, audio, graphics, input
handling, game state management, launcher, and OSystem API components. When referring to
engines, we specifically wrote about the SCI engine. We found out that the SCI engine follows
an interpreter style and has a core component that acts like a CPU called the PMachine; not only
that, but we also discussed the SCI engine’s history and evolution where it evolved to have more
and more improvements to its resolution and resources.

Looking ahead, ScummVM has the potential for growth and development. The
development team behind ScummVM still has many engines and games that they can look into
interpreting. Also, with how ScummVM is designed to be able to play on any system, even with
the release of new-gen consoles and their games, ScummVM won’t easily be phased out since it
will be able to run on those platforms. In essence, ScummVM is likely to continue thriving as the
go-to software for those who seek enjoyment from playing classic adventure games for the
foreseeable future.

8. Lessons Learned
During the analysis of the ScummVM software, we recognized the importance of clear

and concise documentation as the complexity of the system made it difficult to understand. With
there being various game engines, it became clear that documentation should not only be clear
but also easy to find. ScummVM is an older project that has gone through many versions and
updates, as well as having different contributors who add on top of pre-existing work. With the
numerous contributions spanning over many years, it led to inconsistencies and a lack of a single
unified source of information. The result was a system that was confusing to grasp and
understanding the system required us to piece together information from multiple sources. In
addition, ScummVM’s need for constant updates, especially to maintain compatibility with new
operating systems (like a new version of Windows), taught us the importance of ongoing
maintenance and the need for adaptability in software design. Lastly, working on a project like
this required effective teamwork and since we all didn’t know each other from the start, we had
to quickly learn how to collaborate given our different working styles. During the assignment as
a whole, we learned the value of communication, organization and flexibility when tackling
complex, long-standing software systems such as ScummVM and will apply these lessons to
future deliverables.

9. References

[1] jibbodahibbo, P. by, LittleToonCat, P. by, DreamMaster, P. by, djwillis, P. by, & scemino, P.
by. (2024, October 3). Home. ScummVM. https://www.scummvm.org/



13 TC++ - A1 Report CISC 322

[2] SCI. (n.d.). ScummVM :: Wiki. https://wiki.scummvm.org/index.php/SCI

[3] Welcome to ScummVM! — ScummVM Documentation documentation. (n.d.).
https://docs.scummvm.org/en/v2.8.0/

[4] Developer Central. (n.d.). ScummVM :: Wiki.
https://wiki.scummvm.org/index.php?title=Developer_Central

[5] Programming a new game - ScummVM :: Forums. (2009, September 3). ScummVM Forums.
https://forums.scummvm.org/viewtopic.php?t=7886

[6] Uurloon, M. (2015, December 1). Design of a point and click adventure game engine |
Groebelsloot.
https://www.groebelsloot.com/2015/12/01/design-of-a-point-and-click-adventure-game-engine/

[7] Deckhead. (2020, January 15). Game Engine Development: Engine parts. IndieGameDev.
https://indiegamedev.net/2020/01/15/game-engine-development-for-the-hobby-developer-part-2-
engine-parts/

[8] Folmer, E., Game Engineering Research Group, & University of Nevada, Reno. (2007).
Component based game development – a solution to escalating costs and expanding deadlines?
In H. W. Schmidt (Ed.), CBSE 2007: Vol. LNCS 4608 (pp. 66–73) [Journal-article].
Springer-Verlag Berlin Heidelberg. https://www.eelke.com/assets/pubs/cbgd.pdf

[9] Wikipedia contributors. (2024, October 4). ScummVM. Wikipedia.
https://en.wikipedia.org/wiki/ScummVM

[10] Moss, R. (2012, Jan 17). Maniac Tentacle Mindbenders: How ScummVM’s unpaid coders
kept adventure gaming alive. Ars Technica.
https://arstechnica.com/gaming/2012/01/maniac-tentacle-mindbenders-of-atlantis-how-scummv
m-kept-adventure-gaming-alive/

https://wiki.scummvm.org/index.php/SCI
https://docs.scummvm.org/en/v2.8.0/
https://wiki.scummvm.org/index.php?title=Developer_Central
https://forums.scummvm.org/viewtopic.php?t=7886
https://www.groebelsloot.com/2015/12/01/design-of-a-point-and-click-adventure-game-engine/
https://indiegamedev.net/2020/01/15/game-engine-development-for-the-hobby-developer-part-2-engine-parts/
https://indiegamedev.net/2020/01/15/game-engine-development-for-the-hobby-developer-part-2-engine-parts/
https://www.eelke.com/assets/pubs/cbgd.pdf
https://en.wikipedia.org/wiki/ScummVM
https://arstechnica.com/gaming/2012/01/maniac-tentacle-mindbenders-of-atlantis-how-scummvm-kept-adventure-gaming-alive/
https://arstechnica.com/gaming/2012/01/maniac-tentacle-mindbenders-of-atlantis-how-scummvm-kept-adventure-gaming-alive/

